STRUCTURE OF NUCLEAR C-METHYLATED CHROMONESX

P. Sohár⁺, T. Széll^{0≠}, T. Dudás⁰, I. Sohár⁰ ⁺Research Institute for Pharmaceutical Chemistry, Budapest, and ⁰Department of Applied Chemistry, A. József University, Szeged, Hungary

(Received in UK 7 February 1972; accepted for publication 10 February 1972)

The nuclear methylation of the A ring of flavonoids is known. Little data are available, however, for the anologue reaction of hydroxybenzopyrones $(chromones)^{1,2,3}$. In this work 2,3-dialkyl-5,7-dihydroxy-chromones (<u>Ia-d</u>) were converted into 3-C-methyl derivatives by boiling them in methanol in the presence of methyliodide and sodiummethoxide. The structures of the 7-methoxy--8-C-methyl derivatives (<u>IIa-d</u>) thus obtained were established by means of NMR spectroscopy. The NMR spectra of <u>Ia-d</u> and <u>IIa-d</u> resp., were compared with those of the 7-methoxy (<u>III</u>), 5-acetoxy-7-methoxy (<u>IV</u>) derivatives of <u>I</u>, and with those of the 5-acetoxy derivatives of <u>II</u> (<u>V</u>), respectively. In each case

$$R^{2} = Me (a,b); Et (c,d)$$

 $R^{3} = Me (a,c); Et (b,d)$
 $R^{5} = OH (I-III), OAc (IV,V)$
 $R^{6} = H ; R^{7} = OH (I), OMe (II-V)$
 $R^{8} = H (I,III,IV); Me (II,V)$

independently of the 2,3-alkyl groups, the same type of compound (<u>II</u>) was obtained. The clarification of the structure is demonstrated with compound <u>IIa</u>. All data for the remaining models are very similar.

In the NMR spectrum of <u>IIa</u> there are 6 singlets at $\delta=1.90$, 2.01, 2.27, 3.82, 6.13 and \sim 13.0 ppm., the intensity of which correspond to 3, 3, 3, 3, 1 and

x Details of synthesis are to be published in the Indian J. Chem. 10 (1972) *Present address: United Nations International School, New York.

1 proton, resp. The first three peaks correspond to protons of methyl groups on an aromatic ring, the 3.82 ppm signal to a methoxy group. The next two can be assigned to an aromatic and to a chelated hydroxy proton, resp. Thus an additional nuclear methyl group appeared in the molecule in addition to that due to the methylation of the 7-hydroxy group. The position of this group (6 or 8) must be determined. Since the chemical shifts of H-6 and H-8 protons are very similar (the difference is ~ 0.1 ppm) the problem cannot be solved by the chemical shift of the remaining aromatic proton. By comparing the appropriate chemical shift differences of the aromatic proton in compounds <u>II</u> and those in the acetoxy derivatives of <u>Y</u> the determination of the form of the nuclear methyl group is made possible : in the case of the 6-CMe; 8-CH isomer the acylation of 5-C-OH should result in a 0.2 ppm paramagnetic shift of the aromatic proton, whereas this shift should be greater than 0.6 ppm in the case of the 6-CH; 8-CMe isomer^{4,5}.

	886			¢R ⁶ , ¢R ⁸	۶R ⁸			48H ⁶	Δ δH ⁶ Δ δH ⁸ in III	
	II	IV	V	III	II	IV	v	in II and V	and IV	
a	6.13	6.72	6.63	6.29	2.01	6,58	2.07	0.50	0.43	0.29
Ъ	6.23	6.72	6.68	6.34	2.07	6.56	2.08	0.45	0.38	0.22
с	6.23	6.75	6.70	6.34	2.05	6.58	2.10	0.47	0.41	0.24
đ	6.24	6.75	6.70	6.30	2.05	6,58	2.10	0.46	0.45	0,28

The measured shift between 0.50-0.45 ppm suggests a S-CMe pattern. Latter has been further supported by the NMR spectra of compounds <u>III-IV</u> in which the differences of the chemical shifts between 8-CH and 6-CH were found in the region of 0.22-0.29 and 0.38-0.45 ppm, resp., (Table).

References

W. B. Whalley, <u>J. Amer. Chem. Soc.</u>, <u>74</u>, 5794 (1952)
 S. K. Mukerjee and T. R. Seshadri, <u>Proc. Indian Acad. Sci.</u>, <u>38A</u>, 207 (1953)
 A. C. Jain, T. R. Seshadri, <u>J. Sci. Industrial Res. 14A</u>, 227 (1955)
 P. L. Corio, B. P. Dailey, <u>J. Amer. Chem. Soc.</u>, <u>78</u>, 3043 (1956)
 J. S. Martin, B. P. Dailey, <u>J. Chem. Phys. 39</u>, 1723 (1963)